cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168494 Sequence with Hankel transform equal to 3^floor(n^2/3).

Original entry on oeis.org

1, 1, 2, 7, 32, 160, 830, 4405, 23798, 130498, 724748, 4069258, 23064608, 131809108, 758696492, 4394825647, 25600773272, 149877922228, 881394158558, 5204245242208, 30841413359186, 183381577399006, 1093695670905206
Offset: 0

Views

Author

Paul Barry, Nov 27 2009

Keywords

Comments

Hankel transform is A168495.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x-Sqrt[1-10*x+25*x^2-12*x^3])/(6*x*(1-x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)

Formula

G.f.: 1/(1-x/(1-x/(1-3x/(1-x/(1-x/(1-3x/(1-x/(1-x/(1-3x/(1-.... (continued fraction);
G.f.: 1/(1-x-x^2/(1-4x-3x^2/(1-2x-3x^2/(1-4x-x^2/(1-4x-3x^2/(1-2x-3x^2/(1-4x-x^2/(1-... (continued fraction),
with sequences (1,3,3,1,3,3,1,3,3,1,...) and (1,4,2,4,4,2,4,4,2,4,4,...).
G.f.: (1+x-sqrt(1-10x+25x^2-12x^3))/(6x(1-x)).
a(n) = Sum_{k=0..n} A091866(n,k)*3^(n-k). - Philippe Deléham, Nov 27 2009
Conjecture: (n+1)*a(n) +(4-11*n)*a(n-2) +5*(7*n-11)*a(n-2) +(92-37*n) * a(n-3) +6*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Sep 30 2012
a(n) ~ sqrt(33-sqrt(33))*((7+sqrt(33))/2)^n/(12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012

A179533 Expansion of (1/(1-x-2x^2))*c(x/(1-x-2x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 2, 7, 23, 85, 332, 1369, 5870, 25945, 117374, 540805, 2528675, 11966923, 57206972, 275824159, 1339721519, 6549093013, 32195473406, 159065828029, 789395034701, 3933239089903, 19668745466636, 98679891233803, 496570499905832, 2505670304785615, 12675395921692394, 64270076976110203, 326580624341708693, 1662796531746045157, 8481930651824392268, 43341418581113085697
Offset: 0

Views

Author

Paul Barry, Jan 08 2011

Keywords

Comments

Hankel transform is A168495(n+1).

Crossrefs

Programs

  • Maple
    with(LREtools): with(FormalPowerSeries): # requires Maple 2022
    ogf:= (1/(1-x-2*x^2))*(1 - sqrt(1 - 4*(x/(1-x-2*x^2)))) / (2*(x/(1-x-2*x^2))):
    init:= [1, 2, 7, 23, 85, 332, 1369];
    iseq:= seq(u(i-1)=init[i],i=1..nops(init)): req:= FindRE(ogf,x,u(n));
    rmin:= subs(n=n-4,MinimalRecurrence(req,u(n),{iseq})[1]); # Mathar's recurrence
    a:= gfun:-rectoproc({rmin, iseq}, u(n), remember):
    seq(a(n),n=0..30); # Georg Fischer, Nov 04 2022

Formula

G.f.: 1/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-... (continued fraction);
a(n) = Sum_{k=0..n} A000108(k)*Sum_{j=0..n-k} C(k+j,k)*C(j,n-k-j)*2^(n-k-j).
a(n) = Sum_{k=0..n} A073370(n,k)*A000108(k).
D-finite with recurrence: (n+1)*a(n) +2*(1-3n)*a(n-1) +(n-1)*a(n-2) +4*(3n-5)*a(n-3) +4*(n-3)*a(n-4)= 0. - R. J. Mathar, Nov 17 2011
Showing 1-2 of 2 results.