cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168510 Products across consecutive rows of the denominators of the Leibniz harmonic triangle (A003506).

This page as a plain text file.
%I A168510 #24 Mar 11 2018 03:22:43
%S A168510 1,4,54,2304,300000,116640000,133413966000,444110104166400,
%T A168510 4267295479315169280,117595223746560000000000,
%U A168510 9245836018244425723200000000,2065215715357207851951980544000000
%N A168510 Products across consecutive rows of the denominators of the Leibniz harmonic triangle (A003506).
%C A168510 As in A001142, lim_{n->inf} (a(n)a(n+2))/a(n+1)^2 = e, demonstrating an underlying relation between A003506 and Pascal's triangle A007318. Unlike A001142, in this case the function is asymptotic from above.
%H A168510 A. Bogomolny, <a href="http://www.cut-the-knot.org/Curriculum/Combinatorics/LeibnitzTriangle.shtml">Cut The Knot: Leibniz and Pascal Triangles</a>
%H A168510 H. J. Brothers, <a href="https://doi.org/10.1017/S0025557200004447">Pascal's prism</a>, The Mathematical Gazette, 96 (July 2012), 213-220.
%F A168510 a(n) = n!*Product_{k=1..n} k^(2k-n-1).
%F A168510 a(n) = Product_{j=1..n} Product_{k=2..j} ((1-1/k)^-k).
%F A168510 a(1) = 1; a(n) = a(n-1)*Product_{k=2..n} ((1-1/k)^-k).
%F A168510 a(n) ~ A^2 * exp(n^2/2 - 1/12) * n^(n/2 + 1/6) / (2*Pi)^(n/2), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Oct 22 2017
%F A168510 a(n) = Product_{k=0..n-1} (n-k)^(n-2k). - _Peter Munn_, Mar 07 2018
%e A168510 For n=3, row 3 of A003506 = {3, 6, 3} and a(3)=54.
%e A168510 a(5) = 5^5 * 4^3 * 3^1 * 2^-1 * 1^-3 = 5^5 * 3 * 2^5 = 300000. - _Peter Munn_, Mar 07 2018
%t A168510 Table[n! Product[k^(2 k - n - 1), {k, 1, n}], {n, 1, 12}]
%t A168510 Table[Product[Product[(1 - 1/k)^-k, {k, 2, j}], {j, 1, n}], {n, 1, 12}]
%t A168510 (* or *)
%t A168510 a[1] = 1; a[n_] := a[n - 1] Product[(1 - 1/k)^-k, {k, 2, n}]
%Y A168510 Cf. A003506, A001142, A007318. For n >= 1, a(n) = n!*A001142(n).
%K A168510 easy,nonn
%O A168510 1,2
%A A168510 _Harlan J. Brothers_, Nov 27 2009