cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168516 Table of the numerators of the fractions of Bernoulli twin numbers and their higher-order differences, read by antidiagonals.

This page as a plain text file.
%I A168516 #15 Aug 27 2022 03:14:56
%S A168516 -1,1,-1,-1,2,-1,-1,-1,1,1,1,-1,-8,-1,1,1,1,4,-4,-1,-1,-1,-1,4,8,4,-1,
%T A168516 -1,-1,-1,-8,-4,4,8,1,1,5,7,-4,-116,-32,-116,-4,7,5,5,5,32,28,16,-16,
%U A168516 -28,-32,-5,-5,-691,-2663,-388,2524,5072,6112,5072,2524,-388,-2663,-691,-691,-691,-10264,-10652,-8128,-3056,3056,8128,10652,10264,691,691,7,1247,556,-4148,-2960,-22928
%N A168516 Table of the numerators of the fractions of Bernoulli twin numbers and their higher-order differences, read by antidiagonals.
%C A168516 Consider the Bernoulli twin numbers C(n) = A051716(n)/A051717(n) in the top row and successive higher order differences in the other rows of an array T(0,k) = C(k), T(n,k) = T(n-1,k+1)-T(n-1,k):
%C A168516 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, ...
%C A168516 -3/2, 1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, 1/15, 7/165, -5/33, ...
%C A168516 5/3, 0, -1/30, -1/15, -8/105, -4/105, 4/105, 8/105, -4/165, -32/165, ...
%C A168516 -5/3, -1/30, -1/30, -1/105, 4/105, 8/105, 4/105, -116/1155, -28/165, ...
%C A168516 49/30, 0, 1/42, 1/21, 4/105, -4/105, -32/231, -16/231, 5072/15015, 8128/15015, ...
%C A168516 -49/30, 1/42, 1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015, ...
%C A168516 Remove the two leftmost columns:
%C A168516 -1/3, -1/6, -1/30,  1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66,-691/2730, 691/2730, ...
%C A168516 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, 1/15, 7/165, -5/33, -2663/15015, 691/1365, ...
%C A168516 -1/30, -1/15, -8/105, -4/105, 4/105, 8/105, -4/165, -32/165, -388/15015, 10264/15015, ...
%C A168516 -1/30, -1/105, 4/105, 8/105, 4/105, -116/1155, -28/165, 2524/15015, ...
%C A168516 1/42, 1/21, 4/105, -4/105, -32/231, -16/231, 5072/15015, 8128/15015, -2960/3003, ...
%C A168516 1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015, 3056/15015, -22928/15015, -7184/3003, ...
%C A168516 -1/30, -1/15, -4/165, 28/165, 5072/15015, -3056/15015, -3712/2145, ...
%C A168516 -1/30, 7/165, 32/165, 2524/15015, -8128/15015, -22928/15015, ...
%C A168516 and read the numerators upwards along antidiagonals to obtain the current sequence.
%C A168516 The leftmost column (i.e., the inverse binomial transform of the top row) in this chopped variant equals the top row up to a sign pattern (-1)^n.
%C A168516 In that sense, the C(n) with n>=2 are an eigensequence of the inverse binomial transform (i.e., an autosequence).
%p A168516 C := proc(n) if n=0 then 1; elif n mod 2 = 0 then bernoulli(n)+bernoulli(n-1); else -bernoulli(n)-bernoulli(n-1); end if; end proc:
%p A168516 A168516 := proc(n,k) L := [seq(C(i),i=0..n+k+3)] ; for c from 1 to n do L := DIFF(L) ; end do; numer(op(k+3,L)) ; end proc:
%p A168516 for d from 0 to 15 do for k from 0 to d do printf("%a,",A168516(d-k,k)) ; end do: end do: # _R. J. Mathar_, Jul 10 2011
%t A168516 max = 13; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Numerator (* _Jean-François Alcover_, Aug 09 2012 *)
%Y A168516 Cf. A168426 (denominators), A085737, A085738.
%K A168516 frac,tabl,sign
%O A168516 0,5
%A A168516 _Paul Curtz_, Nov 28 2009
%E A168516 Edited and extended by _R. J. Mathar_, Jul 10 2011