cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168524 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.

This page as a plain text file.
%I A168524 #7 Mar 20 2022 02:19:07
%S A168524 1,1,1,1,10,1,1,39,39,1,1,120,350,120,1,1,341,2266,2266,341,1,1,950,
%T A168524 12895,28340,12895,950,1,1,2659,69201,290891,290891,69201,2659,1,1,
%U A168524 7540,360772,2661644,4987254,2661644,360772,7540,1,1,21681,1851948,22618188,72033750,72033750,22618188,1851948,21681,1
%N A168524 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.
%H A168524 G. C. Greubel, <a href="/A168524/b168524.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A168524 From _G. C. Greubel_, Mar 19 2022: (Start)
%F A168524 G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.
%F A168524 T(n, n-k) = T(n, k). (End)
%e A168524 Triangle of coefficients begins as:
%e A168524   1;
%e A168524   1,     1;
%e A168524   1,    10,       1;
%e A168524   1,    39,      39,        1;
%e A168524   1,   120,     350,      120,        1;
%e A168524   1,   341,    2266,     2266,      341,        1;
%e A168524   1,   950,   12895,    28340,    12895,      950,        1;
%e A168524   1,  2659,   69201,   290891,   290891,    69201,     2659,       1;
%e A168524   1,  7540,  360772,  2661644,  4987254,  2661644,   360772,    7540,     1;
%e A168524   1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1;
%t A168524 T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
%t A168524 Table[T[n, -2, 2, 1], {n, 0, 12}]//Flatten (* modified by _G. C. Greubel_, Mar 19 2022 *)
%o A168524 (Sage)
%o A168524 m=12
%o A168524 def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
%o A168524 def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
%o A168524 def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
%o A168524 flatten([[T(n,k,-2,2,1) for k in (0..n)] for n in (0..m)]) # _G. C. Greubel_, Mar 19 2022
%Y A168524 Cf. A168523, A168525.
%Y A168524 Cf. A142458, A142459.
%K A168524 nonn,tabl
%O A168524 0,5
%A A168524 _Roger L. Bagula_, Nov 28 2009
%E A168524 Edited by _G. C. Greubel_, Mar 19 2022