cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168525 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.

This page as a plain text file.
%I A168525 #6 Mar 20 2022 02:19:15
%S A168525 19,19,19,19,146,19,19,759,759,19,19,3154,10374,3154,19,19,11543,
%T A168525 89398,89398,11543,19,19,39210,615669,1394444,615669,39210,19,19,
%U A168525 127303,3747297,16267301,16267301,3747297,127303,19,19,401858,21201472,160611806,302914330,160611806,21201472,401858,19
%N A168525 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
%H A168525 G. C. Greubel, <a href="/A168525/b168525.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A168525 From _G. C. Greubel_, Mar 19 2022: (Start)
%F A168525 G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
%F A168525 T(n, n-k) = T(n, k). (End)
%e A168525 Triangle begins as:
%e A168525   19;
%e A168525   19,     19;
%e A168525   19,    146,       19;
%e A168525   19,    759,      759,        19;
%e A168525   19,   3154,    10374,      3154,        19;
%e A168525   19,  11543,    89398,     89398,     11543,        19;
%e A168525   19,  39210,   615669,   1394444,    615669,     39210,       19;
%e A168525   19, 127303,  3747297,  16267301,  16267301,   3747297,   127303,     19;
%e A168525   19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19;
%t A168525 T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
%t A168525 Table[T[n, 65/2, -162/2, 135/2], {n,0,12}]//Flatten (* modified by _G. C. Greubel_, Mar 19 2022 *)
%o A168525 (Sage)
%o A168525 m=12
%o A168525 def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
%o A168525 def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
%o A168525 def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
%o A168525 flatten([[T(n,k,65/2, -162/2, 135/2) for k in (0..n)] for n in (0..m)]) # _G. C. Greubel_, Mar 19 2022
%Y A168525 Cf. A142458, A142459.
%Y A168525 Cf. A168523, A168524.
%K A168525 nonn,tabl
%O A168525 0,1
%A A168525 _Roger L. Bagula_, Nov 28 2009
%E A168525 Edited by _G. C. Greubel_, Mar 19 2022