This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168527 #20 Mar 20 2025 04:35:32 %S A168527 0,1,160,3645,34816,203125,863136,2941225,8519680,21789081,50500000, %T A168527 108065221,216483840,410278765,741659296,1287140625,2155872256, %U A168527 3499947505,5526986400,8515304461,12832000000,18954312741,27494626720,39229510585,55133208576 %N A168527 a(n) = n^6*(n^2 + 1)/2. %H A168527 G. C. Greubel, <a href="/A168527/b168527.txt">Table of n, a(n) for n = 0..1000</a> %H A168527 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1). %F A168527 G.f.: (x + 151*x^2 + 2241*x^3 + 7687*x^4 + 7687*x^5 + 2241*x^6 + 151*x^7 + x^8)/(1 - x)^9. - _G. C. Greubel_, Jul 25 2016 %F A168527 E.g.f.: (1/2)*x*(2 + 158*x + 1056*x^2 + 1766*x^3 + 1065*x^4 + 267*x^5 + 28*x^6 + x^7)*exp(x). - _G. C. Greubel_, Mar 20 2025 %t A168527 Table[n^6*(n^2+1)/2, {n,0,40}] (* _G. C. Greubel_, Jul 25 2016 *) %t A168527 LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {0,1,160,3645,34816,203125, 863136,2941225,8519680}, 30] (* _Harvey P. Dale_, May 10 2018 *) %o A168527 (Magma) [n^6*(n^2 + 1)/2: n in [0..30]]; // _Vincenzo Librandi_, Jul 25 2016 %o A168527 (SageMath) %o A168527 def A168527(n): return n^4*binomial(n^2+1,2) %o A168527 print([A168527(n) for n in range(41)]) # _G. C. Greubel_, Mar 20 2025 %Y A168527 Cf. A168526. %K A168527 nonn %O A168527 0,3 %A A168527 _N. J. A. Sloane_, Dec 11 2009