This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168545 #20 Jun 13 2022 15:36:35 %S A168545 5,7,53,59,151,313,1069,1789,1823,2237,2777,3329,3881,3931,4583,5227, %T A168545 6037,7621,7691,9467,12611,13759,14957,17609,20249,28123,35081,36979, %U A168545 49417,56311,56501,63857,69011,71663,79693,85439,94433,114041,117443 %N A168545 Primes p such that the concatenation of p and 29 is a square number: "p 29" = N = m^2. %C A168545 (1) It is conjectured that the sequence is infinite. %C A168545 (2) 29 = prime(10) is the smallest prime with the property that its digits can be the final two digits of a square. %C A168545 (3) The possible final digits of m are necessarily e = 23, 27, 73 or 77. %C A168545 (4) Elementary proof of (3) with (10^2 * k + e)^2 = "n 29" for these four values of e only. %C A168545 (5) Note 23 + 77 = 27 + 73 = 10^2. %D A168545 Andreas Bartholome, Josef Rung, Hans Kern: Zahlentheorie für Einsteiger, Vieweg & Sohn 1995 %D A168545 Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005 %D A168545 Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005 %H A168545 Robert Israel, <a href="/A168545/b168545.txt">Table of n, a(n) for n = 1..10000</a> %e A168545 (1) 529 = 23^2, 5 = prime(3) = a(1); %e A168545 (2) 729 = 27^2, 7 = prime(4) = a(2); %e A168545 (3) 5329 = 73^2, 53 = prime(16) = a(3); %e A168545 (4) 16129 = 127^2, but 161 = 7 * 23 is composite => 161 is not a term of the sequence; %e A168545 (5) 31329 = 177^2, 313 = prime(65) gives a(6) = 313. %p A168545 A:= NULL: %p A168545 count:= 0: %p A168545 for m from 0 while count < 100 do %p A168545 for q in [23,27,73,77] do %p A168545 r:= floor((100*m + q)^2/100); %p A168545 if isprime(r) then A:= A, r; count:= count+1; fi %p A168545 od od: %p A168545 A; # _Robert Israel_, Nov 23 2015 %o A168545 (PARI) isok(n) = isprime(n) && issquare(100*n + 29) \\ _Michel Marcus_, Jul 22 2013; corrected Jun 13 2022 %Y A168545 Cf. A000040 (the prime numbers). %Y A168545 Cf. A167535 (concatenation of two square numbers which give a prime). %Y A168545 Cf. A158896 (primes whose squares are a concatenation of 2 with some prime). %K A168545 nonn,base %O A168545 1,1 %A A168545 Ulrich Krug (leuchtfeuer37(AT)gmx.de), Nov 29 2009