This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168546 #38 Feb 11 2013 13:52:00 %S A168546 8,4,7,0,2,5,2,6,4,0,8,1,2,5,3,3,2,2,8,1,9,7,7,5,1,1,0,2,1,6,8,9,4,2, %T A168546 4,3,2,4,7,1,5,2,5,0,7,4,2,9,1,8,6,5,4,2,3,7,9,6,2,1,7,1,6,8,1,7,8,1, %U A168546 8,9,1,2,7,3,5,9,9,4,0,4,4,3,0,7,3,4,4,9,9,3,7,6,4,0,5,8,5,2,0,3,5,4,1,5,8,4 %N A168546 Decimal expansion of the argument z in (0,Pi/2) for which the function log(cos(sin(x)))/log(sin(cos(x))) possesses the maximum in (0,Pi/2). %C A168546 We have max{f(x): x in (0,Pi/2)} = f(z) = A215832 = 0.641019237..., where f(x) = log(cos(sin(x)))/log(sin(cos(x))). See also A215833. %D A168546 R. Witula, D. Jama, E. Hetmaniok, D. Slota, On some inequality of the trigonometric type, Zeszyty Naukowe Politechniki Slaskiej - Matematyka-Fizyka (Science Fascicle of Silesian Technical University - Math.-Phys.), 92 (2010), 83-92. %e A168546 = 0.8470252640812533228197751102168942432471525... %t A168546 f[x_] := Log[Cos[Sin[x]]] / Log[Sin[Cos[x]]]; x /. FindRoot[f'[x] == 0, {x, 1}, WorkingPrecision -> 130] // RealDigits[#, 10, 126]& // First (* _Jean-François Alcover_, Feb 11 2013 *) %Y A168546 Cf. A215832, A215833, A215670, A215668, A216891. %K A168546 nonn,cons %O A168546 0,1 %A A168546 _Roman Witula_, Aug 24 2012 %E A168546 Terms corrected by _Jean-François Alcover_, Feb 11 2013