This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168557 #15 Nov 22 2018 20:20:32 %S A168557 1,-2,2,2,-2,-3,-3,2,4,6,4,-2,-5,-10,-10,-5,2,6,15,20,15,6,-2,-7,-21, %T A168557 -35,-35,-21,-7,2,8,28,56,70,56,28,8,-2,-9,-36,-84,-126,-126,-84,-36, %U A168557 -9,2,10,45,120,210,252,210,120,45,10,-2,-11,-55,-165,-330,-462,-462,-330 %N A168557 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (-1)^n*((x + 1)^n - x^n + 1), 0 <= k <= max(0, n - 1). %C A168557 A variant of Pascal's triangle, the first column replaced by 2 (if n > 0), the last column dropped, and then odd rows multiplied by (-1)^n. %C A168557 Absolute value row sums are A000079. %F A168557 From _Franck Maminirina Ramaharo_, Nov 22 2018: (Start) %F A168557 T(n,k) = (-1)^n*binomial(n, k) + (-1)^n*delta(0, k) - delta(0, n), where delta is Kronecker's delta-symbol. %F A168557 G.f.: (1 + 2*x*y - (1 - x - x^2)*y^2)/((1 + y)*(1 + x*y)*(1 + y + x*y)). %F A168557 E.g.f.: (1 - exp(y) + exp(x*y))*exp(-(1 + x)*y). (End) %e A168557 Triangle begins: %e A168557 1; %e A168557 -2; %e A168557 2, 2; %e A168557 -2, -3, -3; %e A168557 2, 4, 6, 4; %e A168557 -2, -5, -10, -10, -5; %e A168557 2, 6, 15, 20, 15, 6; %e A168557 -2, -7, -21, -35, -35, -21, -7; %e A168557 2, 8, 28, 56, 70, 56, 28, 8; %e A168557 -2, -9, -36, -84, -126, -126, -84, -36, -9; %e A168557 2, 10, 45, 120, 210, 252, 210, 120, 45, 10; %e A168557 -2, -11, -55, -165, -330, -462, -462, -330, -165, -55, -11; %e A168557 2, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12; %e A168557 ... %t A168557 Table[CoefficientList[(-1)^n*(x + 1)^n - (-1)^n*(x^n - 1), x], {n, 0, 12}] %o A168557 (Maxima) create_list((-1)^n*binomial(n, k) + (-1)^n*kron_delta(0, k) - kron_delta(0, n), n, 0, 12, k, 0, max(0, n - 1)); /* _Franck Maminirina Ramaharo_, Nov 21 2018 */ %Y A168557 Cf. A074909, A007318, A108086, A117440, A130595. %K A168557 sign,tabf,easy %O A168557 0,2 %A A168557 _Roger L. Bagula_, Nov 29 2009