cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168574 a(n) = (4*n + 3)*(1 + 2*n^2)/3.

This page as a plain text file.
%I A168574 #19 Sep 08 2022 08:45:49
%S A168574 1,7,33,95,209,391,657,1023,1505,2119,2881,3807,4913,6215,7729,9471,
%T A168574 11457,13703,16225,19039,22161,25607,29393,33535,38049,42951,48257,
%U A168574 53983,60145,66759,73841,81407,89473,98055,107169,116831,127057,137863,149265,161279
%N A168574 a(n) = (4*n + 3)*(1 + 2*n^2)/3.
%C A168574 Binomial transform of quasi-finite sequence 1, 6, 20, 16, 0, 0, ... (0 continued).
%C A168574 a(n+1) is the sum of the first and last number at the bottom (2nd row) of each block in A172002, 3+4, 13+20, 39+56, ...
%H A168574 Vincenzo Librandi, <a href="/A168574/b168574.txt">Table of n, a(n) for n = 0..10000</a>
%H A168574 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A168574 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
%F A168574 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 16.
%F A168574 a(n) = A168582(2*n+1) .
%F A168574 a(n+1) = A166911(n) + A002492(n+1).
%F A168574 G.f.: (1 + 3*x + 11*x^2 + x^3)/(1 - x)^4.
%F A168574 E.g.f.: (1/3)*(3 + 18*x + 30*x^2 + 8*x^3)*exp(x). - _G. C. Greubel_, Jul 26 2016
%t A168574 Table[ (4*n+3)*(1+2*n^2)/3 , {n,0,25}] (* _G. C. Greubel_, Jul 26 2016 *)
%t A168574 LinearRecurrence[{4,-6,4,-1},{1,7,33,95},40] (* _Harvey P. Dale_, May 16 2019 *)
%o A168574 (Magma) [(4*n+3)*(1+2*n^2)/3 : n in [0..40]]; // _Vincenzo Librandi_, Aug 06 2011
%o A168574 (PARI) a(n)=(4*n+3)*(1+2*n^2)/3 \\ _Charles R Greathouse IV_, Jul 26 2016
%Y A168574 Cf. A168547, A168234.
%K A168574 nonn,easy
%O A168574 0,2
%A A168574 _Paul Curtz_, Nov 30 2009
%E A168574 Edited and extended by _R. J. Mathar_, Mar 25 2010