cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168585 Number of ways of partitioning the multiset {1,1,2,3,...,n-1} into exactly five nonempty parts.

This page as a plain text file.
%I A168585 #7 Aug 18 2017 22:16:44
%S A168585 1,11,90,640,4151,25221,146140,817730,4458201,23835031,125551790,
%T A168585 653873220,3375658651,17308994441,88284419040,448429907110,
%U A168585 2270331053501,11464832543451,57778226219890,290711449879400
%N A168585 Number of ways of partitioning the multiset {1,1,2,3,...,n-1} into exactly five nonempty parts.
%H A168585 M. Griffiths, I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths/griffiths11.html">A generalization of Stirling Numbers of the Second Kind via a special multiset</a>, JIS 13 (2010) #10.2.5.
%H A168585 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (15,-85,225,-274,120).
%F A168585 For a>=5, a(n) = (3*5^(n-2) - 10*4^(n-2) + 14*3^(n-2) - 3*2^(n) + 7)/24.
%F A168585 The shifted exponential generating function is (375e^(5x) - 640e^(4x) + 378e^(3x) - 96e^(2x) + 7e^x)/24.
%F A168585 The ordinary generating function is x^5(1-4x+10x^2)/((1-x)(1-2x)(1-3x)(1-4x)(1-5x)).
%t A168585 f3[n_] := 1/24 (3 5^(n - 2) - 10 4^(n - 2) + 14 3^(n - 2) - 3 2^(n) + 7); Table[f3[n], {n, 3, 25}]
%Y A168585 The number of ways of partitioning the multiset {1, 1, 2, 3, ..., n-1} into exactly two, three and four nonempty parts are given in A083329, A168583 and A168584, respectively.
%K A168585 nonn,easy
%O A168585 5,2
%A A168585 _Martin Griffiths_, Nov 30 2009