This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168622 #12 Apr 10 2025 06:52:33 %S A168622 1,1,1,1,14,1,1,21,21,1,1,28,42,28,1,1,35,70,70,35,1,1,42,105,140,105, %T A168622 42,1,1,49,147,245,245,147,49,1,1,56,196,392,490,392,196,56,1,1,63, %U A168622 252,588,882,882,588,252,63,1,1,70,315,840,1470,1764,1470,840,315,70,1 %N A168622 Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1. %H A168622 G. C. Greubel, <a href="/A168622/b168622.txt">Rows n = 0..50 of the triangle, flattened</a> %F A168622 From _G. C. Greubel_, Apr 10 2025: (Start) %F A168622 T(n, k) = 7*binomial(n, k), with T(n, 0) = T(n, n) = 1. %F A168622 T(n, n-k) = T(n, k). %F A168622 Sum_{k=0..n} T(n, k) = 2*A048489(n-1) + 6*[n=0]. %F A168622 Sum_{k=0..n} (-1)^k*T(n, k) = -6*(1 + (-1)^n) + 13*[n=0]. %F A168622 Sum_{k=0..floor(n/2)} T(n-k, k) = A022090(n+1) - 3*(3 + (-1)^n) + 6*[n=0]. %F A168622 Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (14/sqrt(3))*(-1)^n*cos((4*n+1)*Pi/6) - 6*(1 + (-1)^n*cos(n*Pi/2)) + 6*[n=0]. (End) %e A168622 Triangle begins as: %e A168622 1; %e A168622 1, 1; %e A168622 1, 14, 1; %e A168622 1, 21, 21, 1; %e A168622 1, 28, 42, 28, 1; %e A168622 1, 35, 70, 70, 35, 1; %e A168622 1, 42, 105, 140, 105, 42, 1; %e A168622 1, 49, 147, 245, 245, 147, 49, 1; %e A168622 1, 56, 196, 392, 490, 392, 196, 56, 1; %e A168622 1, 63, 252, 588, 882, 882, 588, 252, 63, 1; %e A168622 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1; %t A168622 (* First program *) %t A168622 p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]]; %t A168622 Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten %t A168622 (* Second program *) %t A168622 A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]]; %t A168622 Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Apr 10 2025 *) %o A168622 (Magma) %o A168622 A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >; %o A168622 [A168622(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 10 2025 %o A168622 (SageMath) %o A168622 def A168622(n,k): %o A168622 if k==0 or k==n: return 1 %o A168622 else: return 7*binomial(n,k) %o A168622 print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # _G. C. Greubel_, Apr 10 2025 %Y A168622 Cf. A022090, A131115, A132047, A168620, A168623. %Y A168622 Columns (essentially): A008589 (k=1), A024966 (k=2). %K A168622 nonn,tabl,easy %O A168622 0,5 %A A168622 _Roger L. Bagula_ and _Gary W. Adamson_, Dec 01 2009