This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168653 #2 Mar 30 2012 18:37:20 %S A168653 1,1,2,6,21,82,340,1478,6622,30433,142331,676203,3248579,15776459, %T A168653 77196573,380849394,1888606247,9430534212,47236684433,238214461960, %U A168653 1202007809362,6116704517639,30997312336216,159384351652358 %N A168653 G.f. satisfies: A(x*A(x)) = G(x) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. %F A168653 G.f. satisfies: A(x) = 1 + A(x)^3*Series_Reversion(x*A(x)). %F A168653 G.f. satisfies: A( x*(1-x)^2*A(x*(1-x)^2) ) = 1/(1-x). %F A168653 G.f. satisfies: A( (x/(1+x)^3)*A(x/(1+x)^3) ) = 1 + x. %e A168653 G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 82*x^5 + 340*x^6 +... %e A168653 A(x*A(x)) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +... %o A168653 (PARI) {a(n)=local(A=1+x, F=sum(k=0, n, binomial(3*k+1, k)/(3*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F, x, serreverse(x*(A+x*O(x^n))^1))); polcoeff(A, n)} %o A168653 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+A^3*serreverse(x*(A+x*O(x^n)))); polcoeff(A,n)} %Y A168653 Cf. A154677, A168478, A168448, A001764. %K A168653 nonn %O A168653 0,3 %A A168653 _Paul D. Hanna_, Dec 06 2009