This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168655 #17 Nov 14 2014 11:59:15 %S A168655 1,1,3,5,11,22,44,88,177,355,710,1419,2838,5679,11363,22727,45443, %T A168655 90862,181703,363419,726903,1453875,2907667,5814880,11628864,23256828, %U A168655 46513965,93031069,186068503,372142797,744280096,1488527555,2976987042,5953897971,11907811651 %N A168655 Number of compositions such that the number of parts is divisible by the first part. %H A168655 Alois P. Heinz, <a href="/A168655/b168655.txt">Table of n, a(n) for n = 1..250</a> %F A168655 G.f.: (1-x)*Sum(x^(2*n-1)/((1-x)^n-x^n),n=1..infinity), First differences of A101510. %F A168655 a(n) ~ log(2) * 2^(n-1). - _Vaclav Kotesovec_, May 01 2014 %p A168655 b:= proc(n,t,g) option remember; `if`(n=0, %p A168655 `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1, %p A168655 `if`(g=0,i,g)), i=1..n)) %p A168655 end: %p A168655 a:= n-> b(n,0,0): %p A168655 seq(a(n), n=1..40); # _Alois P. Heinz_, Dec 15 2009 %t A168655 A101510[n_] := Sum[If[Mod[i+1, k+1] == 0, Binomial[n-k, i], 0], {k, 0, n/2}, {i, 0, n-k}]; A168655 = Join[{1}, Table[A101510[n], {n, 0, 32}] // Differences] (* _Jean-François Alcover_, Jan 24 2014 *) %Y A168655 Cf. A079501. %K A168655 easy,nonn %O A168655 1,3 %A A168655 _Vladeta Jovovic_, Dec 01 2009 %E A168655 More terms from _Alois P. Heinz_, Dec 15 2009