cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168655 Number of compositions such that the number of parts is divisible by the first part.

This page as a plain text file.
%I A168655 #17 Nov 14 2014 11:59:15
%S A168655 1,1,3,5,11,22,44,88,177,355,710,1419,2838,5679,11363,22727,45443,
%T A168655 90862,181703,363419,726903,1453875,2907667,5814880,11628864,23256828,
%U A168655 46513965,93031069,186068503,372142797,744280096,1488527555,2976987042,5953897971,11907811651
%N A168655 Number of compositions such that the number of parts is divisible by the first part.
%H A168655 Alois P. Heinz, <a href="/A168655/b168655.txt">Table of n, a(n) for n = 1..250</a>
%F A168655 G.f.: (1-x)*Sum(x^(2*n-1)/((1-x)^n-x^n),n=1..infinity), First differences of A101510.
%F A168655 a(n) ~ log(2) * 2^(n-1). - _Vaclav Kotesovec_, May 01 2014
%p A168655 b:= proc(n,t,g) option remember; `if`(n=0,
%p A168655       `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1,
%p A168655       `if`(g=0,i,g)), i=1..n))
%p A168655     end:
%p A168655 a:= n-> b(n,0,0):
%p A168655 seq(a(n), n=1..40); # _Alois P. Heinz_, Dec 15 2009
%t A168655 A101510[n_] := Sum[If[Mod[i+1, k+1] == 0, Binomial[n-k, i], 0], {k, 0, n/2}, {i, 0, n-k}]; A168655 =  Join[{1}, Table[A101510[n], {n, 0, 32}] // Differences] (* _Jean-François Alcover_, Jan 24 2014 *)
%Y A168655 Cf. A079501.
%K A168655 easy,nonn
%O A168655 1,3
%A A168655 _Vladeta Jovovic_, Dec 01 2009
%E A168655 More terms from _Alois P. Heinz_, Dec 15 2009