This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168686 #17 Mar 24 2021 08:05:45 %S A168686 1,9,72,576,4608,36864,294912,2359296,18874368,150994944,1207959552, %T A168686 9663676416,77309411328,618475290624,4947802324992,39582418599936, %U A168686 316659348799488,2533274790395868,20266198323166656,162129586585330980 %N A168686 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I. %C A168686 The initial terms coincide with those of A003951, although the two sequences are eventually different. %C A168686 First disagreement at index 17: a(17) = 2533274790395868, A003951(17) = 2533274790395904. - _Klaus Brockhaus_, Mar 30 2011 %C A168686 Computed with MAGMA using commands similar to those used to compute A154638. %H A168686 G. C. Greubel, <a href="/A168686/b168686.txt">Table of n, a(n) for n = 0..500</a> %H A168686 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,-28). %F A168686 G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (28*t^17 - 7*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1). %F A168686 G.f.: (1+t)*(1-t^17)/(1 - 8*t + 35*t^17 - 28*t^18). - _G. C. Greubel_, Mar 24 2021 %t A168686 CoefficientList[Series[(1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18), {t, 0, 40}], t] (* _G. C. Greubel_, Aug 03 2016; Mar 24 2021 *) %t A168686 coxG[{17, 28, -7, 40}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Mar 24 2021 *) %o A168686 (Magma) %o A168686 R<t>:=PowerSeriesRing(Integers(), 40); %o A168686 Coefficients(R!( (1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18) )); // _G. C. Greubel_, Mar 24 2021 %o A168686 (Sage) %o A168686 def A168686_list(prec): %o A168686 P.<t> = PowerSeriesRing(ZZ, prec) %o A168686 return P( (1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18) ).list() %o A168686 A168686_list(40) # _G. C. Greubel_, Mar 24 2021 %Y A168686 Cf. A003951 (g.f.: (1+x)/(1-8*x)). %K A168686 nonn %O A168686 0,2 %A A168686 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009