This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168713 #13 Oct 09 2018 19:42:45 %S A168713 1,36,1260,44100,1543500,54022500,1890787500,66177562500, %T A168713 2316214687500,81067514062500,2837362992187500,99307704726562500, %U A168713 3475769665429687500,121651938290039062500,4257817840151367187500,149023624405297851562500 %N A168713 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I. %C A168713 The initial terms coincide with those of A170755, although the two sequences are eventually different. %C A168713 First disagreement at index 17: a(17) = 182553939896489868164061870, A170755(17) = 182553939896489868164062500. - _Klaus Brockhaus_, Mar 28 2011 %C A168713 Computed with MAGMA using commands similar to those used to compute A154638. %H A168713 G. C. Greubel, <a href="/A168713/b168713.txt">Table of n, a(n) for n = 0..500</a> %H A168713 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, -595). %F A168713 G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^17 - 34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1). %t A168713 CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^17 - 34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Aug 05 2016 *) %t A168713 coxG[{17,595,-34}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Oct 09 2018 *) %Y A168713 Cf. A170755 (G.f.: (1+x)/(1-35*x)). %K A168713 nonn %O A168713 0,2 %A A168713 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009