This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168717 #11 Nov 24 2016 13:13:02 %S A168717 1,40,1560,60840,2372760,92537640,3608967960,140749750440, %T A168717 5489240267160,214080370419240,8349134446350360,325616243407664040, %U A168717 12699033492898897560,495262306223057004840,19315229942699223188760 %N A168717 Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I. %C A168717 The initial terms coincide with those of A170759, although the two sequences are eventually different. %C A168717 First disagreement at index 17: a(17) = 1145760124970975220334053660, A170759(17) = 1145760124970975220334054440. - _Klaus Brockhaus_, Mar 28 2011 %C A168717 Computed with MAGMA using commands similar to those used to compute A154638. %H A168717 G. C. Greubel, <a href="/A168717/b168717.txt">Table of n, a(n) for n = 0..500</a> %H A168717 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, -741). %F A168717 G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^17 - 38*t^16 - 38*t^15 - 38*t^14 - 38*t^13 - 38*t^12 - 38*t^11 - 38*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5 - 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1). %t A168717 CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^17 - 38*t^16 - 38*t^15 - 38*t^14 - 38*t^13 - 38*t^12 - 38*t^11 - 38*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5 - 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Aug 05 2016 *) %Y A168717 Cf. A170759 (G.f.: (1+x)/(1-39*x)). %K A168717 nonn %O A168717 0,2 %A A168717 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009