This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168730 #12 Nov 24 2016 13:50:04 %S A168730 1,5,20,80,320,1280,5120,20480,81920,327680,1310720,5242880,20971520, %T A168730 83886080,335544320,1342177280,5368709120,21474836480,85899345910, %U A168730 343597383600,1374389534250,5497558136400,21990232543200,87960930163200 %N A168730 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I. %C A168730 The initial terms coincide with those of A003947, although the two sequences are eventually different. %C A168730 First disagreement at index 18: a(18) = 85899345910, A003947(18) = 85899345920. - _Klaus Brockhaus_, Mar 27 2011 %C A168730 Computed with MAGMA using commands similar to those used to compute A154638. %H A168730 G. C. Greubel, <a href="/A168730/b168730.txt">Table of n, a(n) for n = 0..500</a> %H A168730 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6). %F A168730 G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1). %t A168730 CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Aug 06 2016 *) %Y A168730 Cf. A003947 (G.f.: (1+x)/(1-4*x)). %K A168730 nonn,easy %O A168730 0,2 %A A168730 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009