This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168731 #12 Nov 24 2016 13:50:34 %S A168731 1,6,30,150,750,3750,18750,93750,468750,2343750,11718750,58593750, %T A168731 292968750,1464843750,7324218750,36621093750,183105468750, %U A168731 915527343750,4577636718735,22888183593600,114440917967640,572204589836400 %N A168731 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I. %C A168731 The initial terms coincide with those of A003948, although the two sequences are eventually different. %C A168731 First disagreement at index 18: a(18) = 4577636718735, A003948(18) = 4577636718750. - _Klaus Brockhaus_, Mar 27 2011 %C A168731 Computed with MAGMA using commands similar to those used to compute A154638. %H A168731 G. C. Greubel, <a href="/A168731/b168731.txt">Table of n, a(n) for n = 0..500</a> %H A168731 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10). %F A168731 G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^18 - 4*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1). %t A168731 CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^18 - 4*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Aug 06 2016 *) %Y A168731 Cf. A003948 (G.f.: (1+x)/(1-5*x)). %K A168731 nonn,easy %O A168731 0,2 %A A168731 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009