This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168732 #12 Nov 24 2016 13:50:56 %S A168732 1,7,42,252,1512,9072,54432,326592,1959552,11757312,70543872, %T A168732 423263232,2539579392,15237476352,91424858112,548549148672, %U A168732 3291294892032,19747769352192,118486616113131,710919696678660,4265518180071225 %N A168732 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I. %C A168732 The initial terms coincide with those of A003949, although the two sequences are eventually different. %C A168732 First disagreement at index 18: a(18) = 118486616113131, A003949(18) = 118486616113152. - _Klaus Brockhaus_, Mar 27 2011 %C A168732 Computed with MAGMA using commands similar to those used to compute A154638. %H A168732 G. C. Greubel, <a href="/A168732/b168732.txt">Table of n, a(n) for n = 0..500</a> %H A168732 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15). %F A168732 G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1). %t A168732 CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Aug 06 2016 *) %Y A168732 Cf. A003949 (G.f.: (1+x)/(1-6*x)). %K A168732 nonn,easy %O A168732 0,2 %A A168732 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009