This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168766 #14 Nov 24 2016 14:02:01 %S A168766 1,41,1640,65600,2624000,104960000,4198400000,167936000000, %T A168766 6717440000000,268697600000000,10747904000000000,429916160000000000, %U A168766 17196646400000000000,687865856000000000000,27514634240000000000000 %N A168766 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I. %C A168766 The initial terms coincide with those of A170760, although the two sequences are eventually different. %C A168766 First disagreement at index 18: a(18) = 70437463654399999999999999180, A170760(18) = 70437463654400000000000000000. - _Klaus Brockhaus_, Mar 26 2011 %C A168766 Computed with MAGMA using commands similar to those used to compute A154638. %H A168766 G. C. Greubel, <a href="/A168766/b168766.txt">Table of n, a(n) for n = 0..500</a> %H A168766 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, -780). %F A168766 G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^18 - 39*t^17 - 39*t^16 - 39*t^15 - 39*t^14 - 39*t^13 - 39*t^12 - 39*t^11 - 39*t^10 - 39*t^9 - 39*t^8 - 39*t^7 - 39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1). %t A168766 CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^18 - 39*t^17 - 39*t^16 - 39*t^15 - 39*t^14 - 39*t^13 - 39*t^12 - 39*t^11 - 39*t^10 - 39*t^9 - 39*t^8 - 39*t^7 - 39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, Aug 11 2016 *) %Y A168766 Cf. A170760 (G.f.: (1+x)/(1-40*x)). %K A168766 nonn,easy %O A168766 0,2 %A A168766 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009