This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168769 #14 Nov 24 2016 14:02:51 %S A168769 1,44,1892,81356,3498308,150427244,6468371492,278139974156, %T A168769 11960018888708,514280812214444,22114074925221092,950905221784506956, %U A168769 40888924536733799108,1758223755079553361644,75603621468420794550692 %N A168769 Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I. %C A168769 The initial terms coincide with those of A170763, although the two sequences are eventually different. %C A168769 First disagreement at index 18: a(18) = 258473736679858480830700359346, A170763(18) = 258473736679858480830700360292. - _Klaus Brockhaus_, Mar 26 2011 %C A168769 Computed with MAGMA using commands similar to those used to compute A154638. %H A168769 G. C. Greubel, <a href="/A168769/b168769.txt">Table of n, a(n) for n = 0..500</a> %H A168769 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903). %F A168769 G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^18 - 42*t^17 - 42*t^16 - 42*t^15 - 42*t^14 - 42*t^13 - 42*t^12 - 42*t^11 - 42*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1). %t A168769 CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^18 - 42*t^17 - 42*t^16 - 42*t^15 - 42*t^14 - 42*t^13 - 42*t^12 - 42*t^11 - 42*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, Aug 11 2016 *) %Y A168769 Cf. A170763 (G.f.: (1+x)/(1-43*x)). %K A168769 nonn,easy %O A168769 0,2 %A A168769 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009