This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168791 #14 May 09 2023 15:23:30 %S A168791 1,18,306,5202,88434,1503378,25557426,434476242,7386096114, %T A168791 125563633938,2134581776946,36287890208082,616894133537394, %U A168791 10487200270135698,178282404592306866,3030800878069216722,51523614927176684274 %N A168791 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I. %C A168791 The initial terms coincide with those of A170737, although the two sequences are eventually different. %C A168791 First disagreement at index 19: a(19) = 253135520137219049838009, A170737(19) = 253135520137219049838162. - _Klaus Brockhaus_, Mar 30 2011 %C A168791 Computed with MAGMA using commands similar to those used to compute A154638. %H A168791 G. C. Greubel, <a href="/A168791/b168791.txt">Table of n, a(n) for n = 0..500</a> %H A168791 <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, -136). %F A168791 G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1). %t A168791 CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, Aug 15 2016 *) %t A168791 coxG[{19,136,-16}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, May 09 2023 *) %Y A168791 Cf. A170737 (G.f.: (1+x)/(1-17*x)). %K A168791 nonn %O A168791 0,2 %A A168791 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009