This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168818 #15 Nov 26 2020 15:34:11 %S A168818 1,45,1980,87120,3833280,168664320,7421230080,326534123520, %T A168818 14367501434880,632170063134720,27815482777927680,1223881242228817920, %U A168818 53850774658067988480,2369434084954991493120,104255099738019625697280 %N A168818 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I. %C A168818 The initial terms coincide with those of A170764, although the two sequences are eventually different. %C A168818 First disagreement at index 19: a(19) = 17193357381537585907888784669730, A170764(19) = 17193357381537585907888784670720. - _Klaus Brockhaus_, Apr 01 2011 %C A168818 Computed with MAGMA using commands similar to those used to compute A154638. %H A168818 G. C. Greubel, <a href="/A168818/b168818.txt">Table of n, a(n) for n = 0..500</a> %H A168818 <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, -946). %F A168818 G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^19 - 43*t^18 - 43*t^17 - 43*t^16 - 43*t^15 - 43*t^14 - 43*t^13 - 43*t^12 - 43*t^11 - 43*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1). %t A168818 CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^19 - 43*t^18 - 43*t^17 - 43*t^16 - 43*t^15 - 43*t^14 - 43*t^13 - 43*t^12 - 43*t^11 - 43*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Nov 21 2016 *) %t A168818 coxG[{19,946,-43}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Nov 26 2020 *) %Y A168818 Cf. A170764 (G.f.: (1+x)/(1-44*x)). %K A168818 nonn,easy %O A168818 0,2 %A A168818 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009