This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168822 #13 Nov 24 2016 16:28:17 %S A168822 1,49,2352,112896,5419008,260112384,12485394432,599298932736, %T A168822 28766348771328,1380784741023744,66277667569139712, %U A168822 3181328043318706176,152703746079297896448,7329779811806299029504,351829430966702353416192 %N A168822 Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I. %C A168822 The initial terms coincide with those of A170768, although the two sequences are eventually different. %C A168822 First disagreement at index 19: a(19) = 89647535069497835525384077048680, A170768(19) = 89647535069497835525384077049856. - _Klaus Brockhaus_, Apr 01 2011 %C A168822 Computed with MAGMA using commands similar to those used to compute A154638. %H A168822 G. C. Greubel, <a href="/A168822/b168822.txt">Table of n, a(n) for n = 0..500</a> %H A168822 <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, -1128). %F A168822 G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^19 - 47*t^18 - 47*t^17 - 47*t^16 - 47*t^15 - 47*t^14 - 47*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1). %t A168822 CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^19 - 47*t^18 - 47*t^17 - 47*t^16 - 47*t^15 - 47*t^14 - 47*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Nov 21 2016 *) %Y A168822 Cf. A170768 (G.f.: (1+x)/(1-48*x)). %K A168822 nonn,easy %O A168822 0,2 %A A168822 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009