cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169106 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.

This page as a plain text file.
%I A169106 #10 Jun 06 2021 12:37:20
%S A169106 1,45,1980,87120,3833280,168664320,7421230080,326534123520,
%T A169106 14367501434880,632170063134720,27815482777927680,1223881242228817920,
%U A169106 53850774658067988480,2369434084954991493120,104255099738019625697280
%N A169106 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
%C A169106 The initial terms coincide with those of A170764, although the two sequences are eventually different.
%C A169106 First disagreement at index 25: a(25) = 124760397398811063208203727913145933495330, A170764(25) = 124760397398811063208203727913145933496320. - Klaus Brockhaus, Apr 25 2011
%C A169106 Computed with MAGMA using commands similar to those used to compute A154638.
%H A169106 <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, -946).
%F A169106 G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^25 - 43*t^24 - 43*t^23 - 43*t^22 - 43*t^21 - 43*t^20 - 43*t^19 - 43*t^18 - 43*t^17 - 43*t^16 - 43*t^15 - 43*t^14 - 43*t^13 - 43*t^12 - 43*t^11 - 43*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
%t A169106 coxG[{25,946,-43}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jun 06 2021 *)
%Y A169106 Cf. A170764 (G.f.: (1+x)/(1-44*x)).
%K A169106 nonn
%O A169106 0,2
%A A169106 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009