cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169133 Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.

This page as a plain text file.
%I A169133 #14 Nov 25 2016 12:19:16
%S A169133 1,24,552,12696,292008,6716184,154472232,3552861336,81715810728,
%T A169133 1879463646744,43227663875112,994236269127576,22867434189934248,
%U A169133 525950986368487704,12096872686475217192,278228071788929995416
%N A169133 Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
%C A169133 The initial terms coincide with those of A170743, although the two sequences are eventually different.
%C A169133 First disagreement at index 26: a(26) = 265098421726069091188171497832558356, A170743(26) = 265098421726069091188171497832558632. - Klaus Brockhaus, Apr 30 2011
%C A169133 Computed with MAGMA using commands similar to those used to compute A154638.
%H A169133 Vincenzo Librandi, <a href="/A169133/b169133.txt">Table of n, a(n) for n = 0..200</a>
%H A169133 <a href="/index/Rec#order_26">Index entries for linear recurrences with constant coefficients</a>, signature (22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, -253).
%F A169133 G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(253*t^26 - 22*t^25 - 22*t^24 - 22*t^23 - 22*t^22 - 22*t^21 - 22*t^20 - 22*t^19 - 22*t^18 - 22*t^17 - 22*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1).
%t A169133 With[{num=Total[2t^Range[25]]+t^26+1,den=Total[-22 t^Range[25]]+ 253t^26+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* _Harvey P. Dale_, Feb 27 2012 *)
%Y A169133 Cf. A170743 (G.f.: (1+x)/(1-23*x)).
%K A169133 nonn
%O A169133 0,2
%A A169133 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009