cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169192 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.

This page as a plain text file.
%I A169192 #10 Nov 25 2016 14:02:22
%S A169192 1,35,1190,40460,1375640,46771760,1590239840,54068154560,
%T A169192 1838317255040,62502786671360,2125094746826240,72253221392092160,
%U A169192 2456609527331133440,83524723929258536960,2839840613594790256640,96554580862222868725760
%N A169192 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.
%C A169192 The initial terms coincide with those of A170754, although the two sequences are eventually different.
%C A169192 First disagreement at index 27: a(27) = 230419848874926709239991579715253630401965, A170754(27) = 230419848874926709239991579715253630402560. - Klaus Brockhaus, May 07 2011
%C A169192 Computed with MAGMA using commands similar to those used to compute A154638.
%H A169192 <a href="/index/Rec#order_27">Index entries for linear recurrences with constant coefficients</a>, signature (33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, -561).
%F A169192 G.f.: (t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^27 - 33*t^26 - 33*t^25 - 33*t^24 - 33*t^23 - 33*t^22 - 33*t^21 - 33*t^20 - 33*t^19 - 33*t^18 - 33*t^17 - 33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).
%t A169192 coxG[{27,561,-33}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Dec 14 2015 *)
%Y A169192 Cf. A170754 (G.f.: (1+x)/(1-34*x)).
%K A169192 nonn
%O A169192 0,2
%A A169192 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009