cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169248 Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.

This page as a plain text file.
%I A169248 #10 May 10 2018 02:38:05
%S A169248 1,43,1806,75852,3185784,133802928,5619722976,236028364992,
%T A169248 9913191329664,416354035845888,17486869505527296,734448519232146432,
%U A169248 30846837807750150144,1295567187925506306048,54413821892871264854016
%N A169248 Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
%C A169248 The initial terms coincide with those of A170762, although the two sequences are eventually different.
%C A169248 First disagreement at index 28: a(28) = 2892006710361462296633569923624657579424087161, A170762(28) = 2892006710361462296633569923624657579424088064. - _Klaus_ Brockhaus, May 24 2011
%C A169248 Computed with Magma using commands similar to those used to compute A154638.
%H A169248 <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, -861).
%F A169248 G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(861*t^28 - 41*t^27 - 41*t^26 - 41*t^25 - 41*t^24 - 41*t^23 - 41*t^22 - 41*t^21 - 41*t^20 - 41*t^19 - 41*t^18 - 41*t^17 - 41*t^16 - 41*t^15 - 41*t^14 - 41*t^13 - 41*t^12 - 41*t^11 - 41*t^10 - 41*t^9 - 41*t^8 - 41*t^7 - 41*t^6 - 41*t^5 - 41*t^4 - 41*t^3 - 41*t^2 - 41*t + 1).
%Y A169248 Cf. A170762 (G.f.: (1+x)/(1-42*x)).
%K A169248 nonn
%O A169248 0,2
%A A169248 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009