cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169275 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.

This page as a plain text file.
%I A169275 #12 Sep 04 2023 19:19:25
%S A169275 1,22,462,9702,203742,4278582,89850222,1886854662,39623947902,
%T A169275 832102905942,17474161024782,366957381520422,7706105011928862,
%U A169275 161828205250506102,3398392310260628142,71366238515473190982
%N A169275 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.
%C A169275 The initial terms coincide with those of A170741, although the two sequences are eventually different.
%C A169275 First disagreement at index 29: a(29) = 231506363629427687554288275143883914511, A170741(29) = 231506363629427687554288275143883914742. - _Klaus Brockhaus_, Jun 03 2011
%C A169275 Computed with Magma using commands similar to those used to compute A154638.
%H A169275 <a href="/index/Rec#order_29">Index entries for linear recurrences with constant coefficients</a>, signature (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, -210).
%F A169275 G.f.: (t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^29 - 20*t^28 - 20*t^27 - 20*t^26 - 20*t^25 - 20*t^24 - 20*t^23 - 20*t^22 - 20*t^21 - 20*t^20 - 20*t^19 - 20*t^18 - 20*t^17 - 20*t^16 - 20*t^15 - 20*t^14 - 20*t^13 - 20*t^12 - 20*t^11 - 20*t^10 - 20*t^9 - 20*t^8 - 20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1).
%t A169275 coxG[{29,210,-20}] (* The coxG program is at A169452 *)  (* _Harvey P. Dale_, Sep 04 2023 *)
%Y A169275 Cf. A170741 (G.f.: (1+x)/(1-21*x)).
%K A169275 nonn
%O A169275 0,2
%A A169275 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009