This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169302 #12 Jul 10 2020 12:34:19 %S A169302 1,49,2352,112896,5419008,260112384,12485394432,599298932736, %T A169302 28766348771328,1380784741023744,66277667569139712, %U A169302 3181328043318706176,152703746079297896448,7329779811806299029504,351829430966702353416192 %N A169302 Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I. %C A169302 The initial terms coincide with those of A170768, although the two sequences are eventually different. %C A169302 First disagreement at index 29: a(29) = 5820371782265115126010848001325545143666468715368, A170768(29) = 5820371782265115126010848001325545143666468716544. - _Klaus Brockhaus_, Jun 03 2011 %C A169302 Computed with Magma using commands similar to those used to compute A154638. %H A169302 <a href="/index/Rec#order_29">Index entries for linear recurrences with constant coefficients</a>, signature (47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, -1128). %F A169302 G.f.: (t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^29 - 47*t^28 - 47*t^27 - 47*t^26 - 47*t^25 - 47*t^24 - 47*t^23 - 47*t^22 - 47*t^21 - 47*t^20 - 47*t^19 - 47*t^18 - 47*t^17 - 47*t^16 - 47*t^15 - 47*t^14 - 47*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1). %t A169302 coxG[{29,1128,-47}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jul 10 2020 *) %Y A169302 Cf. A170768 (G.f.: (1+x)/(1-48*x)). %K A169302 nonn %O A169302 0,2 %A A169302 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009