cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169303 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.

This page as a plain text file.
%I A169303 #12 Sep 01 2024 15:04:09
%S A169303 1,50,2450,120050,5882450,288240050,14123762450,692064360050,
%T A169303 33911153642450,1661646528480050,81420679895522450,
%U A169303 3989613314880600050,195491052429149402450,9579061569028320720050,469374016882387715282450
%N A169303 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.
%C A169303 The initial terms coincide with those of A170769, although the two sequences are eventually different.
%C A169303 First disagreement at index 29: a(29) = 10579380690121269581886468089383933814503009678825, A170769(29) = 10579380690121269581886468089383933814503009680050. - _Klaus Brockhaus_, Jun 03 2011
%C A169303 Computed with Magma using commands similar to those used to compute A154638.
%H A169303 <a href="/index/Rec#order_29">Index entries for linear recurrences with constant coefficients</a>, signature (48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, -1176).
%F A169303 G.f.: (t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^29 - 48*t^28 - 48*t^27 - 48*t^26 - 48*t^25 - 48*t^24 - 48*t^23 - 48*t^22 - 48*t^21 - 48*t^20 - 48*t^19 - 48*t^18 - 48*t^17 - 48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).
%t A169303 coxG[{29,1176,-48}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Sep 01 2024 *)
%Y A169303 Cf. A170769 (G.f.: (1+x)/(1-49*x)).
%K A169303 nonn
%O A169303 0,2
%A A169303 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009