cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169335 Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

This page as a plain text file.
%I A169335 #10 May 10 2018 00:26:22
%S A169335 1,34,1122,37026,1221858,40321314,1330603362,43909910946,
%T A169335 1449027061218,47817893020194,1577990469666402,52073685498991266,
%U A169335 1718431621466711778,56708243508401488674,1871372035777249126242,61755277180649221165986
%N A169335 Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
%C A169335 The initial terms coincide with those of A170753, although the two sequences are eventually different.
%C A169335 First disagreement at index 30: a(30) = 3701546193198261053263197985176579391323253041, A170753(30) = 3701546193198261053263197985176579391323253602. - _Klaus Brockhaus_, Jun 23 2011
%C A169335 Computed with Magma using commands similar to those used to compute A154638.
%H A169335 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -528).
%F A169335 G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^30 - 32*t^29 - 32*t^28 - 32*t^27 - 32*t^26 - 32*t^25 - 32*t^24 - 32*t^23 - 32*t^22 - 32*t^21 - 32*t^20 - 32*t^19 - 32*t^18 - 32*t^17 - 32*t^16 - 32*t^15 - 32*t^14 - 32*t^13 - 32*t^12 - 32*t^11 - 32*t^10 - 32*t^9 - 32*t^8 - 32*t^7 - 32*t^6 - 32*t^5 - 32*t^4 - 32*t^3 - 32*t^2 - 32*t + 1).
%Y A169335 Cf. A170753 (G.f.: (1+x)/(1-33*x)).
%K A169335 nonn
%O A169335 0,2
%A A169335 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009