cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169348 Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

This page as a plain text file.
%I A169348 #10 May 10 2018 00:14:33
%S A169348 1,47,2162,99452,4574792,210440432,9680259872,445291954112,
%T A169348 20483429889152,942237774900992,43342937645445632,1993775131690499072,
%U A169348 91713656057762957312,4218828178657096036352,194066096218226417672192
%N A169348 Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
%C A169348 The initial terms coincide with those of A170766, although the two sequences are eventually different.
%C A169348 First disagreement at index 30: a(30) = 77996475219866169585065809473571497350227067665351, A170766(30) = 77996475219866169585065809473571497350227067666432. - _Klaus Brockhaus_, Jun 23 2011
%C A169348 Computed with Magma using commands similar to those used to compute A154638.
%H A169348 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, -1035).
%F A169348 G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^30 - 45*t^29 - 45*t^28 - 45*t^27 - 45*t^26 - 45*t^25 - 45*t^24 - 45*t^23 - 45*t^22 - 45*t^21 - 45*t^20 - 45*t^19 - 45*t^18 - 45*t^17 - 45*t^16 - 45*t^15 - 45*t^14 - 45*t^13 - 45*t^12 - 45*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).
%Y A169348 Cf. A170766 (G.f.: (1+x)/(1-46*x)).
%K A169348 nonn
%O A169348 0,2
%A A169348 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009