cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169349 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

This page as a plain text file.
%I A169349 #10 May 10 2018 00:14:55
%S A169349 1,48,2256,106032,4983504,234224688,11008560336,517402335792,
%T A169349 24317909782224,1142941759764528,53718262708932816,
%U A169349 2524758347319842352,118663642324032590544,5577191189229531755568,262127985893787992511696
%N A169349 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
%C A169349 The initial terms coincide with those of A170767, although the two sequences are eventually different.
%C A169349 First disagreement at index 30: a(30) = 148620636697777530054608969100828269614430281130088, A170767(30) = 148620636697777530054608969100828269614430281131216. - _Klaus Brockhaus_, Jun 23 2011
%C A169349 Computed with Magma using commands similar to those used to compute A154638.
%H A169349 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, -1081).
%F A169349 G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^30 - 46*t^29 - 46*t^28 - 46*t^27 - 46*t^26 - 46*t^25 - 46*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
%Y A169349 Cf. A170767 (G.f.: (1+x)/(1-47*x)).
%K A169349 nonn
%O A169349 0,2
%A A169349 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009