This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169433 #14 May 08 2018 01:01:55 %S A169433 1,36,1260,44100,1543500,54022500,1890787500,66177562500, %T A169433 2316214687500,81067514062500,2837362992187500,99307704726562500, %U A169433 3475769665429687500,121651938290039062500,4257817840151367187500,149023624405297851562500 %N A169433 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I. %C A169433 The initial terms coincide with those of A170755, although the two sequences are eventually different. %C A169433 First disagreement is at index 32, the difference is 630. - _Klaus Brockhaus_, Jun 30 2011 %C A169433 Computed with Magma using commands similar to those used to compute A154638. %H A169433 <a href="/index/Rec#order_32">Index entries for linear recurrences with constant coefficients</a>, signature (34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, -595). %F A169433 G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^32 - 34*t^31 - 34*t^30 - 34*t^29 - 34*t^28 - 34*t^27 - 34*t^26 - 34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 - 34*t^21 - 34*t^20 - 34*t^19 - 34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1). %F A169433 G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-34*sum(k=1..31,x^k)+595*x^32). %t A169433 With[{num=Total[2t^Range[31]]+t^32+1,den=Total[-34 t^Range[31]]+ 595t^32+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* _Harvey P. Dale_, Nov 11 2011 *) %Y A169433 Cf. A170755 (G.f.: (1+x)/(1-35*x) ). %K A169433 nonn %O A169433 0,2 %A A169433 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009