This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169434 #13 May 08 2018 01:05:32 %S A169434 1,37,1332,47952,1726272,62145792,2237248512,80540946432, %T A169434 2899474071552,104381066575872,3757718396731392,135277862282330112, %U A169434 4870003042163884032,175320109517899825152,6311523942644393705472 %N A169434 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I. %C A169434 The initial terms coincide with those of A170756, although the two sequences are eventually different. %C A169434 First disagreement is at index 32, the difference is 666. - _Klaus Brockhaus_, Jun 30 2011 %C A169434 Computed with Magma using commands similar to those used to compute A154638. %H A169434 <a href="/index/Rec#order_32">Index entries for linear recurrences with constant coefficients</a>, signature (35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, -630). %F A169434 G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^32 - 35*t^31 - 35*t^30 - 35*t^29 - 35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 - 35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1). %F A169434 G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-35*sum(k=1..31,x^k)+630*x^32). %t A169434 With[{num=Total[2t^Range[31]]+t^32+1,den=Total[-35 t^Range[31]]+ 630t^32+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* _Harvey P. Dale_, Oct 03 2012 *) %Y A169434 Cf. A170756 (G.f.: (1+x)/(1-36*x) ). %K A169434 nonn %O A169434 0,2 %A A169434 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009