This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169546 #15 Sep 08 2022 08:45:49 %S A169546 1,5,20,80,320,1280,5120,20480,81920,327680,1310720,5242880,20971520, %T A169546 83886080,335544320,1342177280,5368709120,21474836480,85899345920, %U A169546 343597383680,1374389534720,5497558138880,21990232555520,87960930222080 %N A169546 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^35 = I. %C A169546 The initial terms coincide with those of A003947, although the two sequences are eventually different. %C A169546 Computed with MAGMA using commands similar to those used to compute A154638. %H A169546 G. C. Greubel, <a href="/A169546/b169546.txt">Table of n, a(n) for n = 0..1000</a> %H A169546 <a href="/index/Rec#order_35">Index entries for linear recurrences with constant coefficients</a>, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6). %F A169546 G.f.: (t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^35 - 3*t^34 - 3*t^33 - 3*t^32 - 3*t^31 - 3*t^30 - 3*t^29 - 3*t^28 - 3*t^27 - 3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1). %F A169546 G.f.: (1+x)*(1-x^35)/(1 - 4*x + 9*x^35 - 6*x^36). - _G. C. Greubel_, Apr 25 2019 %t A169546 coxG[{35,6,-3,30}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jan 16 2015 *) %t A169546 CoefficientList[Series[(1+x)*(1-x^35)/(1-4*x+9*x^35-6*x^36), {x, 0, 25}], x] (* _G. C. Greubel_, Apr 25 2019 *) %o A169546 (PARI) my(x='x+O('x^25)); Vec((1+x)*(1-x^35)/(1-4*x+9*x^35-6*x^36)) \\ _G. C. Greubel_, Apr 25 2019 %o A169546 (Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (1+x)*(1-x^35)/(1-4*x+9*x^35-6*x^36) )); // _G. C. Greubel_, Apr 25 2019 %o A169546 (Sage) ((1+x)*(1-x^35)/(1-4*x+9*x^35-6*x^36)).series(x, 25).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 25 2019 %K A169546 nonn %O A169546 0,2 %A A169546 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009