cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169586 Primes p in A168540 for which q = 3^3 + 10^2*p^3 (A168487) is prime.

This page as a plain text file.
%I A169586 #3 Jan 18 2021 05:15:17
%S A169586 2,5,7,13,17,29,61,109,137,149,191,223,227,269,311,331,337,359,389,
%T A169586 397,409,433,457,467,491,587,619,653,661,709,727
%N A169586 Primes p in A168540 for which q = 3^3 + 10^2*p^3 (A168487) is prime.
%C A169586 It is conjectured that sequence is infinite
%D A169586 Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
%D A169586 Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005
%D A169586 Arnold Scholz, Bruno Schoeneberg: Einführung in die Zahlentheorie, Walter de Gruyter, 5. Auflage 1973
%e A169586 (1) 3^3+10^2*2^3=827=prime(144) gives a(1)=2=prime(1)
%e A169586 (2) 3^3+10^2*5^3=12527=prime(1496) gives a(2)=5=prime(3)
%e A169586 (3) 3^3+10^2*13^3=219727=prime(19588) gives a(4)=13=prime(6)
%Y A169586 A000040 The prime numbers
%Y A169586 A167535 Concatenation of two square numbers which give a prime
%Y A169586 A168147 Primes of the form p = 1 + 10*n^3 for a natural number n
%Y A169586 A168327 Primes of concatenated form p= "1 n^3"
%Y A169586 A168375 Naturals n for which the concatenation p= "1 n^3"is prime
%Y A169586 A168487 Primes of form p = 3^3 + 10^2*n^3 with a natural number n
%Y A169586 A168540 Naturals n for which the concatenation p = 3^3 + 10^2*n^3 is prime
%K A169586 nonn
%O A169586 1,1
%A A169586 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 02 2009