cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169588 The total number of ways of partitioning the multiset {1,1,1,1,2,3,...,n-3}.

This page as a plain text file.
%I A169588 #13 Aug 06 2021 15:35:55
%S A169588 5,12,38,141,592,2752,13960,76464,448603,2801054,18516832,129034659,
%T A169588 944356507,7235605732,57879020756,482189616711,4174720731316,
%U A169588 37489711726834,348592657600818,3350919079643612,33252861484374737,340209759518479300,3584240435109146792
%N A169588 The total number of ways of partitioning the multiset {1,1,1,1,2,3,...,n-3}.
%H A169588 Alois P. Heinz, <a href="/A169588/b169588.txt">Table of n, a(n) for n = 4..576</a>
%H A169588 M. Griffiths, I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths/griffiths11.html">A generalization of Stirling Numbers of the Second Kind via a special multiset</a>, JIS 13 (2010) #10.2.5.
%H A169588 M. Griffiths, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Griffiths/griffiths7.html">Generalized Near-Bell Numbers</a>, JIS 12 (2009) 09.5.7
%F A169588 For n>=4, a(n)=(Bell(n)+6Bell(n-1)+17Bell(n-2)+20Bell(n-3)+21Bell(n-4))/24, where Bell(n) is the n-th Bell number (the Bell numbers are given in A000110). e.g.f. (e^(4x)+12e^(3x)+42e^(2x)+44e^x+21)(e^(e^x-1))/24.
%t A169588 Table[(BellB[n] + 6 BellB[n - 1] + 17 BellB[n - 2] + 20 BellB[n - 3] + 21 BellB[n - 4])/24, {n, 4, 23}]
%Y A169588 This is related to A000110, A035098 and A169587.
%Y A169588 Row n=4 of A346426.
%Y A169588 Cf. A346814.
%K A169588 nonn
%O A169588 4,1
%A A169588 _Martin Griffiths_, Dec 02 2009