cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169594 Number of divisors of n, counting divisor multiplicity in n.

This page as a plain text file.
%I A169594 #38 Apr 10 2025 08:33:48
%S A169594 1,2,2,4,2,4,2,6,4,4,2,7,2,4,4,9,2,7,2,7,4,4,2,10,4,4,6,7,2,8,2,11,4,
%T A169594 4,4,12,2,4,4,10,2,8,2,7,7,4,2,14,4,7,4,7,2,10,4,10,4,4,2,13,2,4,7,15,
%U A169594 4,8,2,7,4,8,2,16,2,4,7,7,4,8,2,14,9,4,2,13,4,4,4,10,2,13,4,7,4,4,4,17,2,7
%N A169594 Number of divisors of n, counting divisor multiplicity in n.
%C A169594 The multiplicity of a divisor d > 1 in n is defined as the largest power i for which d^i divides n; and for d = 1 it is defined as 1.
%C A169594 a(n) is also the sum of the multiplicities of the divisors of n.
%C A169594 In other words, a(n) = 1 + sum of the highest exponents e_i for which each number k_i in range 2 .. n divide n, as {k_i}^{e_i} | n. For nondivisors of n this exponent e_i is 0, for n itself it is 1. - _Antti Karttunen_, May 20 2017
%C A169594 From _Gus Wiseman_, Mar 25 2021: (Start)
%C A169594 Also the number of strict chains of divisors ending with n and having constant (equal) first quotients. The case starting with 1 is A089723. For example, the a(1) = 1 through a(12) = 7 chains are:
%C A169594   1  2    3    4      5    6    7    8        9      10    11    12
%C A169594      1|2  1|3  1|4    1|5  1|6  1|7  1|8      1|9    1|10  1|11  1|12
%C A169594                2|4         2|6       2|8      3|9    2|10        2|12
%C A169594                1|2|4       3|6       4|8      1|3|9  5|10        3|12
%C A169594                                      2|4|8                       4|12
%C A169594                                      1|2|4|8                     6|12
%C A169594                                                                  3|6|12
%C A169594 (End)
%C A169594 a(n) depends only on the prime signature of n. - _David A. Corneth_, Mar 28 2021
%H A169594 Antti Karttunen, <a href="/A169594/b169594.txt">Table of n, a(n) for n = 1..10000</a>
%F A169594 From _Friedjof Tellkamp_, Feb 29 2024: (Start)
%F A169594 a(n) = A309891(n) + 1.
%F A169594 G.f.: x/(1-x) + Sum_{k>=2, j>=1} x^(k^j)/(1-x^(k^j)).
%F A169594 Dirichlet g.f.: zeta(s) * (1 + Sum_{k>=1} (zeta(k*s) - 1)).
%F A169594 Sum_{n>=1} a(n)/n^2 = (7/24) * Pi^2. (End)
%e A169594 The divisors of 8 are 1, 2, 4, 8 of multiplicity 1, 3, 1, 1, respectively. So a(8) = 1 + 3 + 1 + 1 = 6.
%p A169594 a := n -> ifelse(n < 2, 1, 1 + add(padic:-ordp(n, k), k = 2..n)):
%p A169594 seq(a(n), n = 1..98);  # _Peter Luschny_, Apr 10 2025
%t A169594 divmult[d_, n_] := Module[{output, i}, If[d == 1, output = 1, If[d == n, output = 1, i = 0; While[Mod[n, d^(i + 1)] == 0, i = i + 1]; output = i]]; output]; dmt0[n_] := Module[{divs, l}, divs = Divisors[n]; l = Length[divs]; Sum[divmult[divs[[i]], n], {i, 1, l}]]; Table[dmt0[i], {i, 1, 40}]
%t A169594 Table[1 + DivisorSum[n, IntegerExponent[n, #] &, # > 1 &], {n, 98}] (* _Michael De Vlieger_, May 20 2017 *)
%o A169594 (PARI)
%o A169594 A286561(n,k) = { my(i=1); if(1==k, 1, while(!(n%(k^i)), i = i+1); (i-1)); };
%o A169594 A169594(n) = sumdiv(n,d,A286561(n,d)); \\ _Antti Karttunen_, May 20 2017
%o A169594 (PARI) a(n) = { if(n == 1, return(1)); my(f = factor(n), u = vecmax(f[, 2]), cf = f, res = numdiv(f) - u + 1); for(i = 2, u, cf[, 2] = f[, 2]\i; res+=numdiv(factorback(cf)) ); res } \\ _David A. Corneth_, Mar 29 2021
%o A169594 (Scheme)
%o A169594 (define (A169594 n) (add (lambda (k) (A286561bi n k)) 1 n))
%o A169594 ;; Implements sum_{i=lowlim..uplim} intfun(i)
%o A169594 (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
%o A169594 ;; For A286561bi see A286561. - _Antti Karttunen_, May 20 2017
%o A169594 (Python)
%o A169594 def a286561(n, k):
%o A169594     i=1
%o A169594     if k==1: return 1
%o A169594     while n%(k**i)==0:
%o A169594         i+=1
%o A169594     return i-1
%o A169594 def a(n): return sum([a286561(n, d) for d in divisors(n)]) # _Indranil Ghosh_, May 20 2017
%Y A169594 Cf. A168512.
%Y A169594 Row sums of A286561, A286563 and A286564.
%Y A169594 A001055 counts factorizations (strict: A045778, ordered: A074206).
%Y A169594 A057567 counts chains of divisors with weakly increasing first quotients.
%Y A169594 A067824 counts strict chains of divisors ending with n.
%Y A169594 A253249 counts strict chains of divisors.
%Y A169594 A334997 counts chains of divisors of n by length.
%Y A169594 A342086 counts chains of divisors with strictly increasing first quotients.
%Y A169594 A342496 counts partitions with equal first quotients (strict: A342515, ranking: A342522, ordered: A342495).
%Y A169594 A342530 counts chains of divisors with distinct first quotients.
%Y A169594 Cf. A003238, A003242, A069916, A122651, A309891, A318991, A318992, A325545.
%K A169594 nonn,easy
%O A169594 1,2
%A A169594 _Joseph L. Pe_, Dec 02 2009
%E A169594 Extended by _Ray Chandler_, Dec 08 2009