A169613 Triangular array: T(n,k)=floor(F(n)/F(n-k)), k=1,2,...,n-2; n>=3, where F=A000045 (Fibonacci numbers).
2, 1, 3, 1, 2, 5, 1, 2, 4, 8, 1, 2, 4, 6, 13, 1, 2, 4, 7, 10, 21, 1, 2, 4, 6, 11, 17, 34, 1, 2, 4, 6, 11, 18, 27, 55, 1, 2, 4, 6, 11, 17, 29, 44, 89, 1, 2, 4, 6, 11, 18, 28, 48, 72, 144, 1, 2, 4, 6, 11, 17, 29, 46, 77, 116, 233, 1, 2, 4, 6, 11, 17, 29, 47, 75, 125, 188, 377, 1, 2, 4, 6, 11
Offset: 3
Examples
The first 6 rows: 2 1 3 1 2 5 1 2 4 8 1 2 4 6 13 1 2 4 7 10 21
Programs
-
Mathematica
T[n_, k_] := Floor[Fibonacci[n]/Fibonacci[n-k]]; Table[T[n, k], {n, 3, 15}, {k, 1, n-2}] // Flatten (* Jean-François Alcover, Jul 16 2017 *)
-
Python
from sympy import fibonacci as F, floor def T(n, k): return floor(F(n)/F(n - k)) for n in range(3, 16): print([T(n, k) for k in range(1, n - 1)]) # Indranil Ghosh, Jul 17 2017
Extensions
Offset corrected by Jean-François Alcover, Jul 16 2017
Comments