A169618 Table with T(n,k) = the number of ways to represent k as the sum of a square and a cube modulo n.
1, 2, 2, 3, 3, 3, 6, 6, 2, 2, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 11, 8, 12, 2, 6, 3, 12, 20, 4, 4, 12, 4, 4, 4, 15, 15, 6, 6, 6, 6, 6, 6, 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 18, 18, 6, 6, 18, 18, 6, 6, 18, 18, 6, 6, 13, 11, 18, 8, 20, 15, 6
Offset: 1
Examples
The 6 ways to represent 0 (mod 4) are 0^2+0^3, 0^2+2^3, 1^2+3^3, 2^2+0^3, 2^2+2^3, and 3^2+3^3.
Programs
-
PARI
al(n)=local(v);v=vector(n);for(i=0,n-1,for(j=0,n-1,v[(i^2+j^3)%n+1]++));v
Comments