This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169623 #57 Aug 04 2025 03:37:37 %S A169623 1,1,1,1,1,1,1,2,2,1,1,2,3,2,1,1,3,5,5,3,1,1,3,6,7,6,3,1,1,4,9,13,13, %T A169623 9,4,1,1,4,10,16,19,16,10,4,1,1,5,14,26,35,35,26,14,5,1,1,5,15,30,45, %U A169623 51,45,30,15,5,1,1,6,20,45,75,96,96,75,45,20,6,1 %N A169623 Generalized Pascal triangle read by rows: T(n,0) = T(0,n) = 1 for n >= 0, T(n,k) = 0 for k < 0 or k > n; otherwise T(n,k) = T(n-2,k-2) + T(n-2,k-1) + T(n-2,k) for 1 <= k <= n-1. %C A169623 The borders are all 1's, with zero entries outside. To get an internal entry, use the rule that D = A+B+C here: %C A169623 A B C %C A169623 * * * * %C A169623 * * D * * %C A169623 That is, add the three terms directly above you, two rows back. %C A169623 This is the triangle er(n,k) defined in the Ehrenborg and Readdy link. See Proposition 2.4 and Table 1. - _Michel Marcus_, Sep 14 2016 %C A169623 If the offset is changed from 0 to 1, this is also the table U(n,k) of the coefficients [x^k] p_n(x) of the polynomials p_n(x) = (x + 1)*p_{n-1}(x) (if n even), p_n = (x^2 + x + 1)^floor(n/2) if n odd. %C A169623 May be split into two triangles by taking the even-numbered and odd-numbered rows separately: the even-numbered rows give A027907. %C A169623 From _Peter Bala_, Aug 19 2021: (Start) %C A169623 Let M denote the lower unit triangular array A070909. For k = 0,1,2,..., define M(k) to be the lower unit triangular block array %C A169623 /I_k 0\ %C A169623 \ 0 M/ %C A169623 having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section below. The proof uses the hockey-stick identities from the Formula section. (End) %H A169623 Rémy Sigrist, <a href="/A169623/b169623.txt">Rows 0..199, flattened</a> %H A169623 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Barry/barry321.html">Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices</a>, Journal of Integer Sequences, 19, 2016, #16.3.5. %H A169623 Richard Ehrenborg and Margaret A. Readdy, <a href="http://arxiv.org/abs/1609.03216">The Gaussian coefficient revisited</a>, arXiv:1609.03216 [math.CO], 2016. %H A169623 Richard L. Ollerton and Anthony G. Shannon, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/36-2/ollerton.pdf">Some properties of generalized Pascal squares and triangles</a>, Fib. Q., 36 (No. 2, 1998), 98-109. See Table 10. %H A169623 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hockey-stick_identity">Hockey-stick identity</a>. %F A169623 From _Peter Bala_, Aug 19 2021: (Start) %F A169623 T(2*n,k) = T(2*n-1,k-1) + T(2*n-2,k). %F A169623 T(2*n,k) = T(2*n-1,k) + T(2*n-2,k-2). %F A169623 T(2*n+1,k) = T(2*n,k) + T(2*n,k-1). %F A169623 Hockey stick identities (relate row k entries to entries in row k-1): %F A169623 T(2*n,k) = T(2*n-1,k-1) + T(2*n-3,k-1) + T(2*n-5,k-1) + .... %F A169623 T(2*n+1,k) = T(2*n,k-1) + ( T(2*n-1,k-1) + T(2*n-3,k-1) + T(2*n-5,k-1) + ... ). (End) %e A169623 Triangle begins: %e A169623 1 %e A169623 1 1 %e A169623 1 1 1 %e A169623 1 2 2 1 %e A169623 1 2 3 2 1 %e A169623 1 3 5 5 3 1 %e A169623 1 3 6 7 6 3 1 %e A169623 1 4 9 13 13 9 4 1 %e A169623 1 4 10 16 19 16 10 4 1 %e A169623 ... %e A169623 As a square array read by antidiagonals: %e A169623 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A169623 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, ... %e A169623 1, 2, 3, 5, 6, 9, 10, 14, 15, 20, 21, 27, ... %e A169623 1, 2, 5, 7, 13, 16, 26, 30, 45, ... %e A169623 1, 3, 6, 13, 19, 35, 45, 75, ... %e A169623 1, 3, 9, 16, 35, 51, 96, ... %e A169623 ... %e A169623 From _Peter Bala_, Aug 19 2021: (Start) %e A169623 With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins %e A169623 /1 \/1 \/1 \ /1 \ /1 \ %e A169623 |1 1 ||0 1 ||0 1 ||0 1 | |1 1 | %e A169623 |1 0 1 ||0 1 1 ||0 0 1 ||0 0 1 |... = |1 1 1 | %e A169623 |1 0 1 1 ||0 1 0 1 ||0 0 1 1 ||0 0 0 1 | |1 2 2 1 | %e A169623 |1 0 1 0 1||0 1 0 1 1||0 0 1 0 1||0 0 0 1 1| |1 2 3 2 1 | %e A169623 |... ||... |... ||... | |... | %e A169623 (End) %p A169623 T:=proc(n,k) option remember; %p A169623 if n >= 0 and k = 0 then 1 %p A169623 elif n >= 0 and k = n then 1 %p A169623 elif (k < 0 or k > n) then 0 %p A169623 else T(n-2,k-2)+T(n-2,k-1)+T(n-2,k); %p A169623 fi; %p A169623 end; %p A169623 for n from 0 to 14 do lprint([seq(T(n,k),k=0..n)]); od: # _N. J. A. Sloane_, Nov 23 2017 %t A169623 p[x, 1] := 1; %t A169623 p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + x + 1)^Floor[n/2]] %t A169623 a = Table[CoefficientList[p[x, n], x], {n, 1, 12}] %t A169623 Flatten[a] (* This is for the same sequence but with offset 1 *) %Y A169623 A123149 is essentially the same triangle, except for a diagonal of zeros. %Y A169623 Row sums are in A182522 (essentially A038754). %Y A169623 Cf. A027907, A070909. %Y A169623 See A295555 for the next triangle in the series A007318, A169623 (this sequence). %K A169623 nonn,easy,tabl %O A169623 0,8 %A A169623 _Roger L. Bagula_ and _Gary W. Adamson_, Dec 03 2009 %E A169623 Keyword:tabl added, notation standardized, formula added by the Assoc. Editors of the OEIS, Feb 02 2010 %E A169623 Entry revised by _N. J. A. Sloane_, Nov 23 2017