cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169624 Decimal expansion of e^(Pi*sqrt(58)).

This page as a plain text file.
%I A169624 #14 Feb 16 2025 08:33:11
%S A169624 2,4,5,9,1,2,5,7,7,5,1,9,9,9,9,9,9,8,2,2,2,1,3,2,4,1,4,6,9,5,7,6,1,9,
%T A169624 2,3,5,5,2,6,5,8,1,2,2,2,7,6,1,0,1,7,1,0,7,1,4,6,9,7,8,0,7,4,7,2,7,9,
%U A169624 5,2,1,6,2,0,0,4,6,3,8,7,7,9,6,5,1,8,3,2,7,4,9,6,6,6,8,6,6,6,3,9,2,6,5,4,6
%N A169624 Decimal expansion of e^(Pi*sqrt(58)).
%C A169624 Related to Ramanujan's fast converging series expansion for Pi.
%D A169624 S. Ramanujan, 'Modular equations and approximations to Pi', Quart. J. Math. 45 (1914), 350-372.
%H A169624 S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram06.pdf">Modular equations and approximations to Pi</a>, Quart. J. Math. 45 (1914), 350-372.
%H A169624 Wolfram Mathworld, <a href="https://mathworld.wolfram.com/PiFormulas.html">Pi Formulas</a>.
%e A169624 e^(Pi*sqrt(58)) = 24591257751.99999982221324146957619235526581222...
%t A169624 RealDigits[E^(Pi*Sqrt[58]),10,120][[1]] (* _Harvey P. Dale_, Jul 13 2018 *)
%K A169624 easy,nonn,cons
%O A169624 11,1
%A A169624 _Mark A. Thomas_, Dec 03 2009
%E A169624 Previous Mathematica program replaced by _Harvey P. Dale_, Jul 13 2018