This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169654 #14 Jun 10 2025 23:34:01 %S A169654 1,1,1,1,-4,1,1,24,24,1,1,-138,-118,-138,1,1,1110,780,780,1110,1,1, %T A169654 -10120,-8188,-3358,-8188,-10120,1,1,100856,101976,30240,30240,101976, %U A169654 100856,1,1,-1088710,-1332574,-512062,-60478,-512062,-1332574,-1088710,1 %N A169654 Triangle T(n, k) = A169643(n, k) - A169653(n, 1) + 1, read by rows. %H A169654 G. C. Greubel, <a href="/A169654/b169654.txt">Rows n = 1..100 of the triangle, flattened</a> %F A169654 T(n, k) = t(n, k) + t(n, n-k+1) - t(n, 1) - t(n, n) + 1, where t(n, k) = (-1)^n*(n!/k!)*binomial(n-1, k-1). %F A169654 T(n, k) = A008297(n,k) + A008297(n,n-k+1) - (A008297(n,1) + A008297(n,n)) + 1. %F A169654 From _G. C. Greubel_, Feb 23 2021: (Start) %F A169654 T(n, k) = A169653(n, k) - A169653(n, 1) + 1 %F A169654 T(n, k) = A169653(n, k) - (-1)^n * (n! + 1) + 1. %F A169654 T(n, k) = (-1)^n * (A105278(n, k) + A105278(n, n-k+1) - (n! + 1) + (-1)^n). %F A169654 Sum_{k=1..n} T(n, k) = (-1)^n *(2 * A000262(n) - n*(n! + 1) + (-1)^n * n). (End) %e A169654 Triangle begins as: %e A169654 1; %e A169654 1, 1; %e A169654 1, -4, 1; %e A169654 1, 24, 24, 1; %e A169654 1, -138, -118, -138, 1; %e A169654 1, 1110, 780, 780, 1110, 1; %e A169654 1, -10120, -8188, -3358, -8188, -10120, 1; %e A169654 1, 100856, 101976, 30240, 30240, 101976, 100856, 1; %e A169654 1, -1088710, -1332574, -512062, -60478, -512062, -1332574, -1088710, 1; %e A169654 1, 12700890, 18147240, 9132480, 816480, 816480, 9132480, 18147240, 12700890, 1; %t A169654 t[n_, m_] = (-1)^n*(n!/m!)*Binomial[n-1, m-1]; %t A169654 T[n_, m_] = t[n, m] + t[n, n-m+1] - (-1)^n*(n! + 1) + 1; %t A169654 Table[T[n,k], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Feb 23 2021 *) %o A169654 (Sage) %o A169654 def A001263(n, k): return binomial(n-1, k-1)*binomial(n,k-1)/k %o A169654 def A169653(n, k): return (-1)^n*A001263(n, k)*(factorial(k) + factorial(n-k+1)) %o A169654 def A169654(n, k): return A169653(n, k) - A169653(n, 1) + 1 %o A169654 flatten([[A169654(n,k) for k in (1..n)] for n in (1..10)]) # _G. C. Greubel_, Feb 23 2021 %o A169654 (Magma) %o A169654 A001263:= func< n,k | Binomial(n-1, k-1)*Binomial(n,k-1)/k >; %o A169654 A169653:= func< n,k | (-1)^n*A001263(n, k)*(Factorial(k) + Factorial(n-k+1)) >; %o A169654 A169654:= func< n,k | A169653(n, k) - A169653(n, 1) + 1 >; %o A169654 [A169654(n, k): k in [1..n], n in [1..10]]; // _G. C. Greubel_, Feb 23 2021 %Y A169654 Cf. A000262, A001263, A008297, A105278, A169653. %K A169654 sign,tabl,easy,less %O A169654 1,5 %A A169654 _Roger L. Bagula_, Apr 05 2010 %E A169654 Edited by _G. C. Greubel_, Feb 23 2021