A169657 The classical Lie superfactorial of type Dr ~ SO(2r): When a Lie group G is simply laced, the classical Lie superfactorial sf_G is the product of s! where s belongs to the multiset E of exponents of G. Here G=Dr.
12, 4320, 87091200, 158018273280000, 37845502865178624000000, 1649653134695488211543654400000000, 17257672962657131355854388575443353600000000000
Offset: 3
Links
- Robert Coquereaux, Global dimensions for Lie groups at level k and their conformally exceptional quantum subgroups, arxiv:1003.2589 [math.QA], 2010.
- Robert Coquereaux, Quantum McKay correspondence and global dimensions for fusion and module-categories associated with Lie groups, arXiv preprint arXiv:1209.6621 [math.QA], 2012-2013. - From _N. J. A. Sloane_, Dec 29 2012
Crossrefs
Programs
-
Mathematica
sfD[r_] := Factorial[(2 r - 2)/2] Product[Factorial[s], {s, 1, (2 r - 2) - 1, 2}] Table[Sqrt[BarnesG[2*n]*Gamma[n]] / 2^((n-1)/2), {n,3,10}] (* Vaclav Kotesovec, Apr 19 2024 *) Table[Det[Table[i^(2*j), {i, 1, n-1}, {j, 1, n-1}]], {n, 3, 10}] (* Vaclav Kotesovec, Apr 19 2024 *)
Formula
From Vaclav Kotesovec, Apr 19 2024: (Start)
a(n) = sqrt(BarnesG(2*n)*Gamma(n)) / 2^((n-1)/2).
a(n) ~ 2^(n^2 - n + 17/24) * Pi^(n/2) * n^(n^2 - n/2 - 1/24) / (sqrt(A) * exp(3*n^2/2 - n/2 - 1/24)), where A is the Glaisher-Kinkelin constant A074962.
(End)
Comments