A169668 The product of factorials s! where s belongs to the multiset of exponents of the Lie groups G=Br or G=Cr. Also 2^r times the classical Lie superfactorial of type Br ~ SO(2r+1). Also 2^{r(r-1)} times the Lie superfactorial of type Cr ~ Sp(2r).
6, 720, 3628800, 1316818944000, 52563198423859200000, 327312129899898454671360000000, 428017682605583614976547335700480000000000
Offset: 2
Links
- R. Coquereaux, Global dimensions for Lie groups at level k and their conformally exceptional quantum subgroups, arxiv:1003.2589
- R. Coquereaux, Quantum McKay correspondence and global dimensions for fusion and module-categories associated with Lie groups, arXiv preprint arXiv:1209.6621, 2012. - From _N. J. A. Sloane_, Dec 29 2012
Crossrefs
Programs
-
Mathematica
Product[Factorial[s], {s, 1, (2 r - 1), 2}]
Formula
Product_{s \in 1,3,5,.., 2r-1} s!
a(n) ~ 2^(n^2 + n + 5/24) * n^(n^2 + n/2 - 1/24) * Pi^(n/2) / (sqrt(A) * exp(n*(3*n+1)/2 - 1/24)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 05 2021
Comments