cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169696 Number of undirected Knight's tours on a 3 X n board.

Original entry on oeis.org

0, 0, 0, 8, 0, 0, 52, 396, 560, 3048, 10672, 57248, 128864, 646272, 1838784, 8636880, 23400992, 105865688, 305753680, 1322849752, 3862974304, 16225820000, 48744080192, 198673312880, 607041217056, 2417584484232, 7519864632928, 29320809649000, 92507134938336
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2010, based on a communication from Don Knuth

Keywords

Comments

I think the (old) name "Number of open Knight's tours on a 3 X n board" is somewhat incorrect, because included are those tours in which the start/end cells are knight-neighbors. Such tours are potentially closed, although actually closing them would deprive them of specific start/end cells. "Number of undirected Knight's tours on a 3 X n board" would be a better name. For example the 3x10 has 3048 undirected tours, which would be 6096 directed tours, in accord with Colin Rose results (http://www.tri.org.au/knightframe.html, Solutions:3xm). Note that the 3x10 also has 16 closed tours (A169764 Number of closed Knight's tours on a 3 X n board), and each of those closed tour appears 30 times among the 3048 undirected tours, and 60 times among the 6096 directed tours. - Pierre Charland, Feb 15 2011

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Cf. A118067.

Formula

a(n) = A169770(n) + A169771(n) + A169772(n).
Asymptotic value: 0.02789*3.45059^n.