A169699 Total number of ON cells at stage n of two-dimensional 5-neighbor outer totalistic cellular automaton defined by "Rule 510".
1, 5, 12, 25, 28, 56, 56, 113, 60, 120, 120, 240, 120, 240, 240, 481, 124, 248, 248, 496, 248, 496, 496, 992, 248, 496, 496, 992, 496, 992, 992, 1985, 252, 504, 504, 1008, 504, 1008, 1008, 2016, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032, 504, 1008, 1008, 2016
Offset: 0
Examples
When arranged into blocks of sizes 1,1,2,4,8,16,...: 1, 5, 12, 25, 28, 56, 56, 113, 60, 120, 120, 240, 120, 240, 240, 481, 124, 248, 248, 496, 248, 496, 496, 992, 248, 496, 496, 992, 496, 992, 992, 1985, 252, 504, 504, 1008, 504, 1008, 1008, 2016, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032, ..., the initial terms in the rows (after the initial rows) have the form 2^m-4 and the final terms are given by A092440. The row beginning with 2^m-4 is divisible by 2^(m-2)-1 (see formula).
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Robert Price, Table of n, a(n) for n = 0..128
- N. H. Packard and S. Wolfram, Two-Dimensional Cellular Automata, Journal of Statistical Physics, 38 (1985), 901-946.
- N. J. A. Sloane, Illustration of first 28 generations
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
Crossrefs
Programs
-
Maple
A000120 := proc(n) add(i,i=convert(n,base,2)) end: ht:=n->floor(log[2](n)); f:=proc(n) local a,t1; if n=0 then 1 else a:=(2^(ht(n)+1)-1)*2^(1+A000120(n)); if 2^log[2](n)=n then a:=a+1; fi; a; fi; end; [seq(f(n),n=0..65)]; # A169699
-
Mathematica
Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[{ 510, {2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},100]] ArrayPlot /@ CellularAutomaton[{510, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 28]
Formula
For n>0, it is easy to show that if 2^k <= n < 2^(k+1) then a(n) =
(2^(k+1)-1)*2^(1+wt(n)), where wt is the binary weight A000120, except that if n is a power of 2 we must add 1 to the result.
Extensions
Entry revised with more precise definition, formula and additional information, N. J. A. Sloane, Aug 24 2014
Comments